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Abstract

Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and

damping characteristics were experimentally determined. Results were obtained over a range of modified Sommeffeld

Number from !.5E6 to 1.5E7, and at temperatures from 25 to 538 °C.

An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different

modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to

6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from

25 to 538°C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The tempera-

ture effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to

frictional type as temperature increased.
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displacement of the bearing and housing, M

displacement of the foil, m

dimensionless speed: A = 6pN/Pa(R/C)2
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Introduction

Compliant gas journal bearings, commonly referred to as foil air bearings, (Fig. I) are a class of self-acting hydrody-

namic bearings that utilize ambient air as the lubricating fluid (Heshmat, et al. 1982; Agrawal, 1990). Self-acting hydrody-

namic bearings are comprised of a shaft that rotates inside a stationary bearing sleeve. The bearings function by building up a

hydrodynamic gas film pressure in the small gap between the rotating shaft surface and the stationary bearing sleeve surface.

The pressure is generated by the surface velocity of the rotating shaft that "drags" fluid into the convergent wedge-shaped gap

formed between the two surfaces. The combination of Couette (shear driven) and Poisselle (pressure driven) flows in the gap

produce a pressure distribution that works to keep the two surfaces separated. This is the same principle by which all self-

acting hydrodynamic bearings operate.

The uniqueness of foil bearings lies in the compliant inner surface of the stationary sleeve, made up of a stack of

sheet metal foils. A smooth top foil provides the bearing surface and is often supported by a series of corrugated bump foils

acting as springs to give foil bearings their compliance. The major benefit of the inner surface being compliant is a film

thickness that is larger than would be present in a geometrically identical rigid air bearing. The larger gap results in lower

power loss due to shearing of the gas film. The thicker gas film and compliant surface combine to make foil bearings less

susceptible to damage by ingested dirt particles as the foil surface can move to allow a large foreign particle in the fluid to

pass. Misalignment and thermal/centrifugal radial growth are less of a problem with foil bearings since the compliant foils

can accommodate these changes in shaft diameter and position (Heshmat, 1994). As a result, foil bearings can operate at

temperatures and speeds far exceeding those at which rigid gas bearings would seize due to shaft growth.

Perhaps the most significant benefits of foil bearings are the added damping afforded by the relative sliding of the

smooth top foil and corrugated bump foil during dynamic shaft motions, and the opportunity for bearing designers to tailor

the stiffness and damping characteristics for a specific application. The research reported in this paper seeks to increase the

understanding of how load, speed, and temperature influence the stiffness and damping characteristics of foil air journal

bearings. It is expected that this knowledge will ultimately lead to improved bearings with capabilities that enable a new

breed of revolutionary oil-free turbomaehinery applications including turbocompressors, turbogenerators, turbopumps, and

gas turbine engines.

Experimental Displacement Measurement Technique

Since it is necessary to measure the motion of the bearing at temperatures exceeding 500 °C, transducers are needed

that can withstand that extreme environment. Accelerometers are commonly used to measure dynamic bearing motion



because they are relatively easy to set up by mounting them on the object of interest. Unfortunately, current accelerometer

technology is limited to lower temperatures. Most accelerometers are limited to 120 °C and high temperature accelerometers

are limited to 250 °C. For these tests, another measurement method was needed.

Several different types of transducers were considered including capacitance displacement probes, laser displace-

ment and velocity probes, and fiber optic displacement probes. The probes that were chosen for this research were fiber optic

displacement probes for a variety of reasons. Among these reasons, the probes offered the sensitivity necessary for the tests at

hand (0.312 I.un/mV) and had a sufficient linear range of 0.125 ram. The laser velocimeter was also a promising option and

may be something to consider for future testing of this type. Their major drawback is that they are difficult to set up properly.

The choice of fiber optic probes dictated that the shaft surface needed to have very good reflective properties at the

high temperatures expected in this testing. This problem was known from previous work done by the author (Howard, et al.,

2001) with this type of sensor. The solution found to work best was a silver based coating sprayed into a groove on the target

surface. The details of the high temperature "mirror" coating can be found in Howard (2000). This coating system provided

a good high temperature optical target at speeds up to 30,000 rpm and temperature up to 538 °C.

Test Method and Data Acquisition

Previous work by the author established a preliminary method for measuring steady state stiffness values (Howard,

et al. 2001) (Howard, 1999). However, the technique used to measure the data was only appropriate for steady state stiffness.

It was not capable of measuring damping or dynamic stiffness coefficients. A new test method was developed to measure the

dynamic characteristics of foil air bearings.

The technique is fairly straightforward. The displacement of the bearing is measured while impacting the bearing

with an electric hammer. An electric hammer was used to give repeatable impacts and to reduce double hits. The frequency of

the vibration decay is used to obtain the stiffness and the rate of decay is used to calculate damping. Only the vertical motion

is measured while the bearing is impacted in the vertical direction. Thus, only one dimensional direct stiffness and damping is

measured. The results therefore, are not sufficient for doing high fidelity rotordynamic analysis, but are good for detecting

trends in the characteristics of foil bearings at high temperature and as a guide for future work.

As a result of the optical nature of the displacement probes, special data acquisition techniques were needed to

ensure good results. The reflectivity of the target surface is a function of circumferential location because of polishing marks,

pits, scratches, etc. As the shaft rotates, reflectivity variations are erroneously read as changes in displacement. In order to

minimize this effect, data is collected at the same location on the shaft each revolution. A shaft encoder with eight equally

spaced groves was used to trigger the data acquisition system to take a data point. Thus, the data sampling rate was synced to

the running speed of the shaft and was fixed at eight times the rotation frequency. The shaft "signature" is stored by rotating

the shaft at the desired speed while storing the displacement output without exciting the bearing. The stored baseline is then

subtracted from the signal as data is collected while exciting the bearing. This made it possible to eliminate most of the false

displacement components contained in the signal.



Oncethedisplacementsignalwasmeasuredandstored,itwastransferredtoapersonalcomputerwhereadedicated

programwaswrittentocalculatestiffnessanddampingcoefficients.ThecomputercodefirstcalculatedaFastFourier

Transform(FFT)ofthedatasetusingasubroutinefromPress(1986).Oncethefundamentalfrequencywasknown,the

stiffness followed from: to = _'_"

I

With the frequency known, the code used that information to calculate a nonlinear curve fit to the data. The

Levenberg-Marquardt method was used to calculate the curve fit using another subroutine from Press (1986). Initially, the

data was assumed to have the form of an exponential decay. Therefore, the code calculated a curve fit of the form:

Xv(t)=A*Exp(B*t)*Sin(C*t)

The constant C was treated as a fixed known value, the frequency from the FFT. The code solved forA and B by minimizing

the chi squared error. Where the chi squared error was defined as:

n

E(Xi(t)- xi(t))^2

i=l

Which is the sum of the squares of the difference between the curve fit at time t and the actual data point at time t.

Once B was known, the damping coefficient was calculated from: D = -2MB.

This method was consistent with modeling the bearing as a viscously damped mass spring system with mass M,

spring constant K, and damping coefficient D as shown in Fig. 2. However, the system could be modeled as a two degree of

freedom system with the bearing mass (M) as one degree of freedom and the foil mass (m) as the other (Fig. 3).

The effect of different spring rates and damping rates on a two degree of freedom model were investigated. The

equations of motion for the model in Fig. 3 were solved for all permutations of M >> m, M << m, M _ m, Kg >> K_ Kg <<

Kf, Kg _ Kf, Dg >> Dr, Dg << D r Dg = Dr. This provided twenty-seven different combinations. These 27 different cases were

reduced to nine realistic cases because it is known that M >> m for all practical applications. Solving for the motion of mass

M illustrates the effect of relative stiffness and damping on the overall motion. If either of the two springs is much stiffer than

the other, then the motion is dominated by the weaker spring and the damping behavior is dominated by the damper attached

to that spring. If the springs are about the same stiffness, then the springs will both have an effect on the motion and both

dampers will affect the damping behavior.

A more physically meaningful model of the bearing is a two degree of freedom system with M being friction

damped and in series with m, which is viscous damped, as in Fig. 4. The above results suggest that if the gas film is much

stiffer than the foil, the foil dominates the motion and the bearing should exhibit frictional damping behavior. On the other

hand, if the foil is much stiffer than the gas film, the gas film dominates the motion and the bearing should exhibit viscous

damping.



Thepreviousdiscussionsuggestsamethodofanalyzingthedatatogainabetterunderstandingofhowthebearing

works.Theproposedmethodistofit thedatatobothexponentialandlineardecaymodelsandcomparetheerrorinthefits.If

theexponentialfit isbetter,thebearingisassumedtobebehavingmostlylikeaviscousdampedsystem.If thelinearfit is

better,it isassumedthebearingisbehavingmostlylikeafrictiondampedsystem.Withthismethodit ispossibletodetermine

inwhichregionsoftheoperatingdomainthegasfilmdominatesthebearingmotionandinwhichregionsthefoildominates

themotion.

ThefrictiondampedmodelisshowninFig.5andtheequationforthecurvefit tothesolutionofthismodelisthe

following:

Xt(t)=(A- B*t)*Sin(C*t)

WhereCisthefrequencyfromtheFFTanalysisasbeforeandtheotherconstants,AandB,arefoundusingthesame

nonlinear least squared curve fitting routine.

Results and Discussion

Bearing displacement data was collected to calculate dynamic stiffness and damping in order to map bearing

behavior as a function of load, and temperature. The speed at which data was taken was 30 000 rpm. The load range tested

was 11.2 to 89.6 N in increments of 11.2 N. The temperatures tested were representative of the range of temperatures in

which foil bearings are expected to operate, except for cryogenic applications, 25 to 538 °C at approximately every 93 °C.

Figure 6 shows the dynamic stiffness results in dimensionless form versus load, and Fig. 7 shows the same data

versus temperature. The data indicates that foil bearing stiffness increases as load on the bearing increases and decreases as

temperature increases. From 25 °C to 204 °C it appears that stiffness is relatively constant with temperature. At 316 °C and

above stiffness decreases slightly with temperature. The plot also shows that the change in stiffness with load is less than one

order of magnitude. That result agrees, at least qualitatively, with the steady state results under the same load conditions from

previous work (Howard, et al. 2000).

When the same data is plotted using a modified version of the Sommerfeld Number, or the bearing number, instead

of load (Fig. 8) it separates into two distinct bands. A higher temperature band (316 °C and above) and a lower temperature

band (204 °C and below). Since the nondimensional variables contain temperature dependant parameters, all the data should

fall relatively close to each other. The fact that it splits into these two bands suggests that there may be another relevant

temperature dependant parameter not included in the nondimensional variable. One possible factor is the sliding friction

coefficient between the top foil and the bumps, and between the bumps and the housing.

It is common for friction coefficients to be relatively constant at lower temperatures then decrease in nearly a step

function fashion and be relatively constant again at higher temperatures (Fig. 9) (Sliney and DellaCorte, 1993). If this were

the case for the foil material, it could explain the distinct temperature banding seen in the results. The friction coefficient



effectis not included in the dimensionless parameters because a functional representation of its temperature dependence is

not well known.

The damping results using the exponential curve fitting routine are shown in Fig. 10. The results indicate that the

damping trend is not a strong function of load, or temperature. In fact, it is difficult to learn anything from the data repre-

sented in this manner. However, when the data is non-dimensionalized, some trends become visible.

Figure I 1 shows the result of nondimensionalizing the damping results. Since the error bars for all of the data

essentially overlap, one can treat the different temperature data as one large set of data. The nondimensional damping

contains load in the denominator and the nondimensional bearing number has load in the numerator. If damping were

independent of load, the data would fall on a line with a slope of negative I on a log-log scale. The linear least squares curve

fit shown in the figure has a slope very near negative I (-0.88) suggesting that the damping is independent of load for all

practical purposes. Therefore, damping is also independent of speed.

The truly important results of this study come in the form of understanding and insight gained from the data. The

error of the two different fitting functions was calculated and plotted for the load and temperature domain tested in these

experiments. Figure 12 contains a load-temperature contour plot and a three dimensional surface. The contour plot (Fig. 12a)

is a broad-brush conceptualization of how the bearing behaves in the load temperature domain. The conceptual contour plot is

substantiated in the surface plot. The surface plot (Fig. 12b) represents the error in the linear fit minus the error in the

exponential fit divided by the error in the exponential fit. Mathematically, the resulting number is the difference in the errors

expressed as a percentage of the error in the exponential fit. The actual numbers are not that important. The physical meaning

of them however, is important. If the number is positive and larger than O. !, then the error in the exponential fit is more than

10 percent less than the error in the linear fit. If the number is negative and smaller than -0. !, then the error in the linear fit is

more than 10 percent less than the error in the exponential fit. If the number is between -0. I and 0. I, then there is less than a

I 0 percent difference in the errors of the two fits.

Qualitatively, this means that if the surface is above 0.1, then the exponential fit is better and the bearing is assumed

to be exhibiting viscous type damping behavior. If the surface is below -0. I, then the linear fit is better and the bearing is

exhibiting friction type damping behavior. Otherwise, neither fit is substantially better and the bearing is behaving with a

combination of both types of damping.

The resulting surface plot is very informative in that light. The region where the surface is above 0.1 is the low load,

high temperature corner of the domain. This means that when the temperature is high and the load is low, the gas film is soft

compared to the foils. Under these conditions, the bearing behaves much like a rigid gas bearing would behave with viscous

damping. The region where the surface is below -0.1 starts in the high load low temperature corner of the domain, and

extends up into the high temperature high load corner. In this region of operating conditions, one would expect the beating to

behave like a friction damped system. In the band between the low load high temperature corner and the high load end of the

domain is the region where both damping mechanisms are likely operating.



The results presented are important because they show how foil be;_rings behave under different operating condi-

tions, particularly temperature. One of the assumptions that has been used in the past is that foil bearings have much more

damping than do identical rigid air bearings due to the rubbing of the foils. Therefore, it was thought that if more damping

were needed for a particular foil bearing, increasing the friction coefficient between the foils with different coatings would

yield more damping.

Peng and Carpino (1993) conducted an analytical study in which they found that damping in foil bearings increases

as the gas film gets stiff. They note that when the gas film is soft due to low load or speed, rigid gas bearings provide more

damping than foil bearings. At high load and high speed when the gas film is stiff, foil bearings provide more damping than

their rigid counterparts due to the coulomb damping in the foils.

The results of the present tests indicate the same phenomenon. If the bearing is operating in a region where the

viscous damping mechanism is dominant (low load, high temperature), adding more friction to the system will not help.

Rather, if more damping is needed, it may be better to load the bearing more heavily (perhaps by making it smaller) so that

foil motion can be encouraged and frictional damping that is already present in the system can contribute. The implication of

the above results is that the bearing properties can indeed be tailored to match the demands of the application to a certain

extent.

Conclusion

A high temperature displacement measurement system was successfully implemented in collecting high temperature

stiffness and damping data. Highly accurate high temperature displacement measurements can be made with the use of the

silver target surface in conjunction with the high temperature optical displacement probe as evidenced by the low error in the

dynamic stiffness measurements. Even with the electric hammer, there is some variability in impact testing. Therefore, the

error in the damping results is mostly due to nonrepeatability. The actual displacement measurements are quite accurate

(within 1 percent).

The present goal of gaining understanding of foil bearings through measurement of trends was met. The foil bearing

community now has an idea of the magnitude of changes to expect in bearing stiffness and damping with changing load,

speed, and temperature. Stiffness can be expected to change by factors of two or three with large changes in load or speed.

The same holds true of stiffness changes with temperature. Order of magnitude changes are not likely.

The major result of this work is a greater understanding of the mechanisms that control the behavior of foil bearings,

which is summed up in Fig. 12. Although trends in absolute damping characteristics are not as clear as trends in stiffness, a

greater understanding of the driving mechanisms can help bearing designers build better bearings and better oil-free

machines.

Until now, researchers and bearing designers have used viscous models to predict how the bearings behave. Judging

from the results of this research, that model may be adequate for some conditions. There is no reason not to continue to use

this model, with the understanding that it does have possible limitations. At least now, the limitations are known and it may be



advisabletoconstructbettermodels including the frictional damping mechanism into the rotordynamic design of machinery

that operates in the high load, high temperature environment.

For machinery operating in the low load, high temperature region, the damping in the bearings may be very small.

However, the bearings have an intrinsic mechanism for helping to keep these systems stable. The damping tends to respond to

high load inputs by shifting into the frictional damping domain where more energy can be dissipated from the system. The

more the bearing is perturbed, the more energy it can absorb. This result points to a definite advantage of foil bearings over

other bearing types.

Also, there is now some understanding about what happens to stiffness at higher temperatures. One can expect

stiffness to drop as the temperature increases from startup of a piece of machinery to operating conditions. However, the

impact of the stiffness drop is likely to be unimportant in light of the fact that the frictional damping mechanism tends to

increase at higher temperatures to help stabilize the system. If more damping is needed, it is now understood that increased

friction coefficients alone will not be sufficient, the bearings must also be able to activate the frictional damping mechanism

in order to reap benefits from the increased friction.
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Figure Captions

Figure l.--Foil bearing schematic.

Figure 2.--Model for a single degree of freedom mass spring damper system with frictional damping.

Figure 3.--Model for a two DOF mass spring damper system with viscous damping.

Figure 4.----Linearized model for a two DOF foil bearing mass spring damper system with viscous and frictional damping.

Figure 5.--Model for a SDOF mass spring damper system with frictional damping.

Figure 6.--Dynamic stiffness versus load, 30 000 rpm.

Figure 7.--Dimensionless stiffness versus temperature.

Figure 8.--Stiffness verses bearing number all temperatures, 30 000 rpm.

Figure 9.--Friction coefficient verses temperature for aluminum oxide against Inconel 718 (from Sliney [7]).

Figure 10.--Dimensional dynamic damping verses load, 30 000 rpm.

Figure 1 l.--Damping verses bearing number for all temperatures, 30 000 rpm.

Figure 12.--(a) Conceptual contour plot of damping mechanism versus load/temperature. (b) Surface plot of relative error in

exponential versus linear curve fitting routines.
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